Ultrastructure and mechanical properties of populus wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase.
نویسندگان
چکیده
Several key enzymes in lignin biosynthesis of Populus have been down-regulated by transgenic approaches to investigate their role in wood lignification and to explore their potential for lignin modification. Cinnamate 4-hydroxylase is an enzyme in the early phenylpropanoid pathway that has not yet been functionally analyzed in Populus . This study shows that down-regulation of cinnamate 4-hydroxylase reduced Klason lignin content by 30% with no significant change in syringyl to guaiacyl ratio. The lignin reduction resulted in ultrastructural differences of the wood and a 10% decrease in wood density. Mechanical properties investigated by tensile tests and dynamic mechanical analysis showed a decrease in stiffness, which could be explained by the lower density. The study demonstrates that a large modification in lignin content only has minor influences on tensile properties of wood in its axial direction and highlights the usefulness of wood modified beyond its natural variation by transgene technology in exploring the impact of wood biopolymer composition and ultrastructure on its material properties.
منابع مشابه
Reduced Lignin Content and Altered Lignin Composition in Transgenic Tobacco Down-Regulated in Expression of L-Phenylalanine Ammonia-Lyase or Cinnamate 4-Hydroxylase.
We analyzed lignin content and composition in transgenic tobacco (Nicotiana tabacum) lines altered in the expression of the early phenylpropanoid biosynthetic enzymes L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase (C4H). The reduction of C4H activity by antisense expression or sense suppression resulted in reduced levels of Klason lignin, accompanied by a decreased syringyl/guaiacyl ...
متن کاملCell Wall Chemotyping for Functional Genomics Applications of Pyrolysis–Gas Chromatography / Mass Spectrometry
The interest in lignocellulose as a sustainable resource for energy and materials has fueled research on biotechnology applications in tree breeding to improve biomass production and wood properties. An important aspect of this research is the basic understanding of gene function in wood formation, where analysis of wood chemistry and wood structure is of utmost importance. Current research str...
متن کاملThe effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar.
Poplar (Populus tremula x alba) lignins with exceedingly high syringyl monomer levels are produced by overexpression of the ferulate 5-hydroxylase (F5H) gene driven by a cinnamate 4-hydroxylase (C4H) promoter. Compositional data derived from both standard degradative methods and NMR analyses of the entire lignin component (as well as isolated lignin fraction) indicated that the C4HF5H transgeni...
متن کاملDown-regulation of p-coumaroyl quinate/shikimate 3′-hydroxylase (C3′H) and cinnamate 4-hydroxylase (C4H) genes in the lignin biosynthetic pathway of Eucalyptus urophylla × E. grandis leads to improved sugar release
BACKGROUND Lignocellulosic materials provide an attractive replacement for food-based crops used to produce ethanol. Understanding the interactions within the cell wall is vital to overcome the highly recalcitrant nature of biomass. One factor imparting plant cell wall recalcitrance is lignin, which can be manipulated by making changes in the lignin biosynthetic pathway. In this study, eucalypt...
متن کاملThermal Softening of Transgenic Aspen
Studies on the softening behavior of in situ lignin of normal wood in a given species have never been performed before due to the relatively narrow lignin content and lignin structural variation within one species. Using transgenic trees with different levels of lignin content and/or syringyl to guaiacyl propane (S/G) ratio helped us to overcome this problem. Submersion three-point bending and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomacromolecules
دوره 11 9 شماره
صفحات -
تاریخ انتشار 2010